What is the role for directional atherectomy in infrainguinal vessels

Ralf Langhoff, MD
Center for Vascular Medicine
Berlin
St. Gertrauden Hospital
Charité, CC11
Academic Teaching Hospitals — Charité Berlin
Clinical Limitations & Unmet Needs

Calcium as a Barrier

Calcium Limits Vessel Expansion

Significant difference in vessel compliance leads to overstretch in non-diseased tissue causing dissections, recoil, excessive injury, and poor outcomes.

![Figure 12.1. Elastic Recoil After PTCA of Calcified Lesions](Calcification_attenuation.jpg)

Calcium May Limit Drug Effect

Increased lesion length is an independent predictor of decreased patency.

1 F. Freed, Manual of Interventional Cardiology, Ch. 10, 245-254
2 Fanelli, DEBELLUM, 3 Laird, CCI, June 2010
3 SMART Control IFU
4 Matusumura, DURABILITY II JVS, July 2013
If you consider to perform atherectomy there will be...

- ...almost no dissections
- ...no need for stents
- ...ideal vessel preparation for DEB
- ...ability to treat Ca^{++}
- ...effective treatment for in-stent-restenosis
- ...ideal treatment for non-stenting-lesions (e.g. CFA, popliteal)
- ...ideal for ostial lesions
- ...but

 ...you will increase your costs
Jetstream (Boston Scientific®)
LINC Live Case 2016 (Atherectomy plus DEB)
Hawk-one (Covidien/Medtronic®)
Distal Popliteal occlusion in a Rutherford 4 Patient
BASELINE: CLINICAL AND ANATOMICAL DESCRIPTION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>67</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
</tr>
<tr>
<td>Diabetes</td>
<td>No</td>
</tr>
<tr>
<td>Rutherford Class</td>
<td>4</td>
</tr>
<tr>
<td>ABI/TBI</td>
<td>0.55</td>
</tr>
<tr>
<td>Lesion Length (cm)</td>
<td>9</td>
</tr>
<tr>
<td>Pre-procedure Stenosis</td>
<td>100%</td>
</tr>
<tr>
<td>Severe Calcium</td>
<td>NO</td>
</tr>
</tbody>
</table>
PROCEDURE

Post 1st cut Silverhawk MS-M

Post 2nd cut Silverhawk MS-M

LAO 30
FINAL RESULT

12 Month F/U Assessment
Rutherford Class 2
ABI/TBI 0.85
Primary Patency (PSVR <2.4) Yes

Provisional Stent No
Pantheris (Avinger®)

Atherectomy plus OCT
Study Design – Definitive AR

General and Angiographic Criteria Assessment

Lesion Severely Calcified*?

- **NO**
 - Randomization
 - DAART (n=48)
 - DCB (n=54)

- **YES**
 - DAART (n=19)

*Defined as: dense circumferential calcification extending > 5 cm
STUDY DESIGN - DEFINITIVE AR

Inclusion Criteria
- RCC Score of 2, 3 or 4
- ≥70% stenosis, restenosis or occlusion in the SFA and/or popliteal artery
- Target lesion(s) length is 7-15 cm
- Target vessel diameter is ≥ 4 mm and ≤ 7 mm

Exclusion Criteria
- In-stent restenosis
- Aneurysmal target vessel
- 2 or more lesions that require treatment in the target limb

Defined as: dense circumferential calcification extending > 5 cm
Study Devices

Covidien’s SilverHawk™ & TurboHawk™ peripheral plaque excision systems

Bayer HealthCare’s Peripheral Paclitaxel-coated angioplasty catheter with Paccocath® Technology

Baseline Lesion Characteristics

Per Core Lab

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>DAART (N= 48)</th>
<th>DCB (N = 54)</th>
<th>p-Value*</th>
<th>DAART Severe Ca++ Arm (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion Length (cm)</td>
<td>11.2</td>
<td>9.7</td>
<td>0.05</td>
<td>11.9</td>
</tr>
<tr>
<td>Diameter Stenosis</td>
<td>82%</td>
<td>85%</td>
<td>0.35</td>
<td>88%</td>
</tr>
<tr>
<td>Reference vessel diameter (mm)</td>
<td>4.9</td>
<td>4.9</td>
<td>0.48</td>
<td>5.1</td>
</tr>
<tr>
<td>Minimum lumen diameter (mm)</td>
<td>1.0</td>
<td>0.8</td>
<td>0.34</td>
<td>0.7</td>
</tr>
<tr>
<td>Calcification</td>
<td>70.8%</td>
<td>74.1%</td>
<td>0.82</td>
<td>94.7%</td>
</tr>
<tr>
<td>Severe calcification</td>
<td>25.0%</td>
<td>18.5%</td>
<td>0.48</td>
<td>89.5%</td>
</tr>
</tbody>
</table>

* p-value for DAART and DCB groups
Periprocedural Outcomes (per CEC)

Higher Technical Success and Lower Incidence of Flow-Limiting Dissection in DAART RCT Arm

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>DAART (N= 48)</th>
<th>DCB (N = 54)</th>
<th>(p)-Value (DAART vs. DCB)</th>
<th>DAART Severe Ca++ Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Success</td>
<td>89.6%</td>
<td>64.2%</td>
<td>0.004</td>
<td>84.2%</td>
</tr>
<tr>
<td>Distal Embolization</td>
<td>6% (3/48)</td>
<td>0% (0/54)</td>
<td>0.101</td>
<td>5.3% (1/19)</td>
</tr>
<tr>
<td>No Intervention</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Endovascular Intervention</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bail-Out Stent</td>
<td>0% (0/48)</td>
<td>3.7% (2/54)</td>
<td>0.50</td>
<td>5.3% (1/19)</td>
</tr>
<tr>
<td>Dissection (flow-limiting, Grade C/D)</td>
<td>2% (1/48)</td>
<td>19% (10/54)</td>
<td>0.01</td>
<td>0% (0/19)</td>
</tr>
<tr>
<td>No Intervention</td>
<td>1</td>
<td>6</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Endovascular Intervention</td>
<td>0</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Perforation</td>
<td>4% (2/48)</td>
<td>0% (0/54)</td>
<td>0.22</td>
<td>0% (0/19)</td>
</tr>
<tr>
<td>No Intervention</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Endovascular Intervention</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Technical success defined as achieving ≤30% residual stenosis following protocol-defined treatment and before adjunctive therapy (ie post-dilatation). No surgical interventions were required for any patient.
Key Study Outcome at 12 Months

DUS Patency - Potential Advantage Emerging in Long and Severely Calcified Lesions

Per Core Lab Assessment. “All Severe Ca++ “ group includes all patients treated with DAART therapy including randomized and non-randomized patients with severe calcium.
Key Study Outcome at 12 Months

Angiographic Patency shows similar pattern

Results for all patients who returned for angiographic follow-up
Major Adverse Events at 1 Year

Similar Rates Observed Across Groups

<table>
<thead>
<tr>
<th>Major Adverse Events</th>
<th>DAART</th>
<th>DCB</th>
<th>p-Value*</th>
<th>DAART Severe Ca++ Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically-driven TLR</td>
<td>7.0% (3/43)</td>
<td>7.8% (4/51)</td>
<td>1.00</td>
<td>0.0% (0/17)</td>
</tr>
<tr>
<td>Death</td>
<td>4.7% (2/43)**</td>
<td>2.0% (1/51)**</td>
<td>0.59</td>
<td>5.9% (1/17)</td>
</tr>
<tr>
<td>Major Amputation</td>
<td>0.0% (0/48)</td>
<td>0.0% (0/54)</td>
<td>NA</td>
<td>0.0% (0/17)</td>
</tr>
<tr>
<td>Total</td>
<td>11.6% (5/43)</td>
<td>9.8% (5/51)</td>
<td>1.00</td>
<td>5.9% (1/17)</td>
</tr>
</tbody>
</table>

* p-value for DAART and DCB groups; **Non device-related – CHF & Cancer
DAART resulted in a significantly larger minimum lumen diameter (MLD) following the protocol-defined treatment in DEFINITIVE AR.
Conclusions

- **DEFINITIVE AR** was a *pilot study* designed to assess the effect of treating lesions with DA followed by DCB (DAART).

- Results suggested trends favoring DAART:
 - Added benefit of DA in lesions ≥10 cm (RCT)
 - DUS Patency: DAART 96.8%; DCB 85.9% (KM)
 - Angiographic patency: DAART 90.9%; DCB 68.8%

 - Added benefit of DA in severely calcified lesions (All DAART)
 - DAART 70.4%; DCB 62.5%

- Added benefit with increased post-procedure MLD

- **24-month follow-up** is on-going to assess long-term effect of DAART. Larger, statistically-powered, randomized studies are needed to further validate the benefits of DAART.
Thank You For Your Attention!

Ralf Langhoff, MD
Center for Vascular Medicine
Berlin
St. Gertrauden Hospital
Charité, CC11
Academic Teaching Hospitals — Charité Berlin
What is the role for directional atherectomy in infrainguinal vessels

Ralf Langhoff, MD
Center for Vascular Medicine
Berlin
St. Gertrauden Hospital
Charité, CC11
Academic Teaching Hospitals — Charité Berlin